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Persistence in coarsening one-dimensional spin systems with a power-law interactiénis considered.
Numerical studies indicate that for sufficiently large values of the interaction expenefat=1/2 in our
simulation, persistence decays as an algebraic function of the length kc@lgl)~L Y. The persistence
exponentd is found to be independent on the force exponerdand close to its value for the extremat (

— ) model, §=0.17507588- -. For smaller values of the force exponent<(1/2), finite size effects
prevent the system from reaching the asymptotic regime. Scaling arguments suggest that in order to avoid
significant boundary effects for smatl, the system size should grow B8 (1/a)]*°.
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Coarsening dynamics of one-dimensioriaD) systems evant to our problem. Ifi3] the exact solution was found for
with a power-lawV(r)~r~?"1 interaction between spins persistence in an ordering system described by the noiseless
has recently been studied by Lee and Cdrtly and Ruten- time-dependent Ginzburg-Landau equation. In the long time
berg and Bray2]. It had been established that after quench-asymptotic regime this model can be viewed as an infinitely
ing from a high-temperature disordered phas#& 00 these short-ranger— o limit of the system with power-law inter-
systems develop a domain structure characterized by a singéetion. In this limit, coarsening proceeds by consecutive
length scaleL(t). A naive argument based on the law of shrinking and disappearance of the current smallest domains
motion for domain walls_L~L "7 (whereL ™7 is a typical  in the system, while other domain boundaries remain virtu-

force between domain Wa)ls produces an asymptotica“y a”y motionless. It was established ﬁﬁ] that persistence ata

correct time dependence bf stage of evolution when the average domain gizis pro-
portional toL ~?, where the exponer@=0.17507 - - is the
L(t)~tYire, (1)  solution of the implicit integral equation.
Other properties of this system, including correlation func-
tions and domain size distribution, have been studief®]n fmdx Xfl—EeXF[_X]'
as well. 0
In this paper we shall look at another facet of 1D phase- 2)

ordering systems with a power-law interaction; what fraction

P of spins have never changed sign up to the tirfaeOr, [(1—x—exd —x])exdr(x)]+26x+ 0x% exd —r(x)]1],
equivalently, what fraction of the space has never been

crossed by a domain wall? Such a property of coarsening

systems is usually called persistence and has recently baherer(x)=[;dyexd —yly+In[x].

come a major subject of research in statistical phyjsSes/]. In [4] persistence exponents have been calculated for
Let us briefly review some known results in this field rel- coarsening 1D Potts models with Glauber dynamics. For the
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FIG. 1. Plot of persistencP(L) vs average domain siZe for FIG. 2. Log-log plot of persistend®(L) vs average domain size
various force exponents. The straight line corresponds ®(L) L force exponentsr=>5/4 with statistical error bars. The straight
~L~9 line corresponds t&(L)~L°.
two-state PottgIsing) model, persistence decays &<, 6 1
=3/8, or in terms of the average domain sike P(L) Fij :W. 5)
~L% =T

The following conclusion can be drawn from a compari-

son of persistence exponents for extremal and Glauber dyyhen the adjacent walls meet, they annihilate. As we men-
namics. Extremal dynamics is more efficient in preservingioned, the degree of coarsening is uniquely characterized by
persistence, since the motion of domain walls is always diy typical domain size (t)~tY(*?). We measure the frac-
rected towards their ultimate annihilation partners while, inyon of spaceP(L) that has never been crossed by a single
the case of Glauber dynamics, domain walls perform ra”dc,"?bomain wall as a function of this length scalét). We per-
walks and sweep through a larger amount of space, Which, 1, molecular dynamics simulations of the model for the
otherwise couldﬁave remained persistent. The extremal d%llowing values of the force exponent o
namics exponeng sets a lower bound on persistence expo-=3/2 5/4,1,3/4,1/2,1/4. Each run starts with a system con-
nents for systems with a finite force exponentitis easy to  sjsting ofN,=100 000 domain walls with exponential distri-
visualize a scenario when a domain wall first moves awayytion of domain sizes\V(Lo) = exp(—Lo). Results for each
from its ultimate annihilation partner, and then, after the, are averaged over 20 initial configurations. Open boundary
stronger force source disappears, it turns back. Such evenggnditions with no replicas added to the boundaries are used.
result in spin flips on parts of the line that belong to a sur-To speed up the evaluation of forces, a 1D multipole expan-
ViVing domain and would have been left untouched in thes|on has been performed, and terms of up to quadrupo|e or-
extremal dynamics case. The results presented below suggefdy were taken into accoufs].
that this lower boundary=0.17507% - - is in fact the exact The results for persistence as a function of the average
value of the persistent exponent for arbitrary0. domain lengthL are presented in log-log form in Fig. 1.
Let us formally introduce our model; we consider coars-Except for small force exponents & 1/4 and later evolution
ening of the 1D two-state spin system with a long-rangestages folr=1/2), all of the curves collapse at a line with a
ferromagnetic Hamiltonian: slope ~—0.175, which corresponds ter=c« extremal
model. Statistical error bars are shown in Fig. 2 for a single
set of data =5/4).
Our simulations suggests that scaling of persistence, cor-
responding tar=o0, is valid for all other not very smalk.
The following asymptotic argument helps us to understand
why this is so. At any current moment of time, persistent
After quenching from a high-temperature random phase tgpins are mostly contained in the domains that were expand-
T=0, coarsening dynamics for this system is determined byng at almost all previous stages of coarsening; i.e., these
the motion of domain walls, governed by the Langevin equadomains were larger than the average at those stages. If one
tion. The velocity of a wall is equal to the sum of pairwise of these large domains is surrounded by two small neighbors,
forces from other walls, with walls of the same signs repel-t would most probably grow outwards, and no spin flips, in
ling and walls of the opposite signs attracting each other: addition to those inevitably caused by directed coarsening
itself, would happen. The situation may be different if two or
three big domains are adjacent to each other; their domain
%: (—1)i+] sgn(ri—1 )i, (4) walls_ may wander and get insi_de thg territory of the future
t iF survivor, causing some excessive spin flips.

-4 SiSj
He— > —— 3
g > (Xi_xj)a+l ()



RAPID COMMUNICATIONS

PRE 60 PERSISTENCE IN SYSTEMS WITH ALGEBRAIC INTERACTION R2439
A ]
lO4 VVZZXX
Vxx
- 3
oS e
g2
10° -1.0 . : . :
3 ) ] 0.0 1.0 20 3.0 4.0 5.0
10 10 10 o
¢ 910
FIG. 3. Plot of average domain sitdt) vs timet for various ~_ F!G- 4. Number of domain wallB(L) that move opposite to the
force exponents. Straight lines correspond to scaling predictions, diréction prescribed by boundary effects vs average domain length
L(t)~tY2+e, L for various force exponenis.

We can estimate the characteristic scale of such a
persistence-losing event. A typical distarkk that a wall of _
large domain of sizé,, surrounded by a group of domains P(t)= "
of similar sizes, travels during timieis zf W(x)dx

0

fo Wixjdxt LVtW(X)dX 1+exd —2t]
-——.®

ALNLI_(L|(l+g)—t)1’““~L(t)[L(t)r_

L_| (6)  with two terms in the numerator describing contributions
from growing and shrinking domains. Systems with few par-

ticles and smallo coarsen almost according to the=0

HereL(t)~t¥**7 is the average domain size at tiheéFor  scenario; particles across the whole system feel the presence

positive o, AL becomes small compared to(t) when  of the boundary. Odd- and even-number walls tend to move

L(t)/L;<1; hence the number of spin flips in addition to predominantly to the left and right, respectively, independent

those present in extremal dynamics coarsening scenario bgf the position of their nearest neighbors.

comes negligible. Another conclusion that follows from Eq. probe whether the deviation froR(L)~L ~¢ scaling

(6) is that for smallo, the crossover time t®(L)~L~"  in persistence behavior is causeddy O finite size effects,
scaling must be larger since the system must develop a strugre do the following measurements. First, for the system of

ture that includes sufficiently large domains. the same initial sizeN=10°) we plot the average domain
However, besides long initial transitional times, there isjength L (t) as a function of time and compare it to the
another reason for the breakdown of scaling for smrahat 1+ prediction.

we observed in our simulations. Let us first consider the Results for this simulation are presented in F|g 3. One

opposite of ther=x case ofc=0. In this limit forces are can see that the system with=1/4 is never in scaling re-
distance independent, and the domain wall dynargss  gime (1), and the system witlr=1/2 behaves according to
described by the equation Eq. (1) only up to some intermediate stage of evolution. For
all other force exponents>1/2, for a certain period of evo-
dr; o lution after a short transitional time, typical domain sizes
EZZ (=)' sgr(ri—rj). (7)  scale according to Ed1).
I#] We also perform a direct check of whether the system
feels the presence of the boundaries, i.e., we count the frac-
If we consider a system with even number of domains whergion of domain wallsB(L) that move opposite to the direc-
the domain walls come in pairs, the sum in Ed).is equal to  tion prescribed by the boundary effects. In Fig. 4 we plot the
+ 1. That means that all walls have the same constant velodraction of even-number domain walls moving to the right
ity with odd-number walls moving to the left and even- and odd-number domain walls moving to the left; initially
number moving to the right. The whole system becomes &he systems consist of the same number of domdihs,
collection of independently collapsing and growing domains.= 10°. For finite >0 and a truly infinite system, this frac-
This clearly violates the scaling); in fact, thee=0 system tion should be equal to 1/2, far=0 it should be 0. We
has two length scaleky—2vt andLy+ 2vt, wherelLq isthe  observe that, according to tH&L) criteria, our system is
average initial domain length and=1 is the velocity of never in the true infinite-size regime for=1/4, finite size
domain walls. For an exponential distribution of initial do- effects are becoming evident for=1/2 even at early stages
main sizesW(L ) =exp(—Lg), persistence can be expressedof evolution, and the boundary effects could be neglected
as only for o=3/4.
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Comparing Figs. 1, 3, and 4, one can note that persistenddereL andN are the typical domain length and the number
P(L) and the typical domain sizke(t) are less sensitive to of domains in the system. The boundary effects become sig-
the finite size effects thaB(L). When the significant frac- nificant when these forces are of the same order. It follows
tion of the domain walls moves in the direction prescribed bythat for 0—0, the minimum number of particles to avoid
the boundarie§B(L)~1/4 for c=1/2, L=10%], P(L) and finite size effectN,,;, grows very fast:

L(t) are still in the scaling regime. A possible explanation

for the relative robustness of the behavior of the average N ~(E> He (11)
domain sizeP(L) and persistenck(t) is that the main con- mng)

tribution to these quantities comes from the large domains,

while for B(L) we count the number of domain walls indis-  In summary, we presented numerical evidence and a scal-
criminate of the domain sizes. ing argument suggesting the universality of persistent expo-

Finally, we present a rough estimate of how big a systenment for extremal modelf§=0.17507588- -, for models
should be for a particular value of<1 to avoid significant  with arbitrary force exponents>0. We found that a devia-
finite-size effects. We evaluate a typical “local” forég _,,  tion from scaling for persistence, which happens for smrall
exerted on a test domain wall by a dipole pair of neighborings accompanied by a similar deviation from scaling for a
domain walls, typical domain size(t) and is caused by finite size effects

17 timated that in order to avoid boundary effects, the system

- + 2 ! y. o Y

L) [oIn2+0(e)], O size should grow a§O(1/0)]¥. A possible extension of
and compare it to a “boundary” forc&y, exerted on the gjity between domain walls and spin dynamics that was ex-
same test domain wall in the middle of the system, by aensively used for this work may not be so straightforward to

1\e [ 1\e that cause crossover toee=0 coarsening scenario. We es-
o) )
this work is for higher dimensional systems, though the du-

single domain wall near the edge of the system. apply.
(2] 10 The author would like to thank P. Krapivsky, A. Ruten-
NTINL) berg, A. Hare, and R. Hill for interesting discussions.
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